Novel sustainable and highperformance catalysts for hydrogen fuel cells

Ioanna Giannopoulou¹ and Alexandros Michaelides²

¹ National Technical University of Athens, Athens, Greece
² RTD TALOS Ltd., Nicosia, Cyprus

3rd Global Summit on Advanced Materials For Energy Applications (GAMSE25) Aveiro, Portugal, 30 April- 1,2 May 2025

To develop a new composite material consisting of a *geopolymer substrate* with incorporated *transition* or *platinum group* metals, as a potential *low-cost* **solid electrolyte** for application in **solid oxide fuel cells** that operate in intermediate temperature (*IT-SOFC*).

3rd Global Summit on Advanced Materials For Energy Applications (GAMSE25)

Outline

- Intermediate-temperature Solid Oxide Fuel Cells
- Geopolymers and Geopolymerization technology
- Development of geopolymer catalysts characterization of materials
 - Synthesis of the geopolymeric catalytic support
 - Incorporation of active metal (Cu, Ni, Co, Pd)
 - Doping with CeO₂
- Catalytic performance of Geo-catalysts on redox reactions
- Conclusions

IT-Solid Oxide Fuel Cells

Important advantages of SOFC:

- high efficiency
- Iong-term stability
- Iow emissions
- relatively low cost

Deficiency: high operating temperature of approx. 1000 °C

- long start-up/shutdown times
- o thermal stress
- o material degradation

To achieve a satisfactory performance at reduced operating temperatures:

- solid electrolytes
- high efficiency and conductivity
- > Operation to temperatures 500 700 °C

- ceramic–matrix composites
- multidoped calcium phosphate
- ✤ alumina/YAG
- aluminosilicates / geopolymers

3rd Global Summit on Advanced Materials For Energy Applications (GAMSE25)

What are Geopolymers?

Structure of geopolymers

"Geopolymers" are synthetic materials produced by the alkali activation of **inorganic solid materials rich in Al and Si phases** (poly-condensation process)

The process is known as "geopolymerization"

Geopolymers are amorphous materials, with a threedimensional aluminosilicate network, consisting of AlO_4 and SiO_4 tetrahedra connected by sharing oxygen atoms. Alkali metals also participate.

Also called as *"inorganic polymers"* and *"alkali-activated aluminosilicates"*

Preparation of Geopolymers

Geopolymerization reaction:

- Dissolution of Si and Al (formation of Si(OH)₄ and Al(OH)⁻₄)
- Formation of oligomers Si-O-Si and Si-O-Al
- Poly-condensation to a 3-D network
- Hardening to a solid structure

Short time reaction / Temperature < 100 °C / Ambient pressure

Advantages of the technology:

- Low cost
- Low environmental footprint (energy demand and CO₂ emissions)

3rd Global Summit on Advanced Materials For Energy Applications (GAMSE25)

Properties and Field of applications

Properties

- Excellent mechanical strength
- Fire and heat resistance / Freezethaw resistance / Acid resistance
- Long-term durability
- Thermal stability / Refractoriness
- Low permeability
- Good adhesion
- Functionalization

Field of applications

- Building and Construction material
- Ceramics, Chemical industry and Metallurgy
- Fire resistant materials
- Waste stabilization and encapsulation of toxic substances
- Wastewater treatment
- Catalysis
- High-technology advanced materials

Process investigation

- Study of the process parameters
- Study of the process kinetics

Evaluation of materials

- ✓ Textural properties, SSA / TPV
- Thermal stability up to 950 °C
- ✓ Hydrolytic stability
- Catalytic performance testing redox reaction: CO and HCs oxidations

(1) Synthesis of the geopolymeric catalytic support

Synthesis parameters

- Solid to liquid ratio
- Al/Si molar ratio
- Content of alkali in the activator

Evaluation of materials properties

- XRD analysis
- Thermal stability up to 950 °C
- Hydrolytic stability (immersed in D.I. water for 24 h / dissolution of metals)

(1) Synthesis of the geopolymeric catalytic support / Na-based materials

 Most of the tested synthesis conditions resulted in "Geopolymers".

The geopolymeric support based on this material was coded NaG4

3rd Global Summit on Advanced Materials For Energy Applications (GAMSE25)

(1) Synthesis of the geopolymeric catalytic support / Na-based materials

- Most of the tested synthesis conditions resulted in "Geopolymers".
- Among the prepared materials, only one remained purely XRDamorphous, after heating at 950 °C / 2h

The geopolymeric support based on this material was coded NaG4

3rd Global Summit on Advanced Materials For Energy Applications (GAMSE25)

(1) Synthesis of the geopolymeric catalytic support / Na-based materials

- NaG4 had low SSA and TPV compared to the other materials used in SOFC.
- After heating at 600 °C/4h, SSA and TPV remained unchangeable. However, after heating at 950 °C / 2h, SSA and TPV were significantly reduced.
- Based on the average pore diameter, it concerns for a macro-porous material.
- According to the hydrolytic stability test, Si and Al dissolution was very low (< 1%).

Property	NaG4-PURE	NaG4-600	NaG4-950
SSA, m²/g	25.7710	23.9320	4.594
TPV, cm³/g	0.2937	0.2556	0.012
APD, nm	45.6	42.7	-

(1) Synthesis of the geopolymeric catalytic support / K-based materials

Structural stability after heating up to 950 °C

- Better SSA and TPV than the Na-based materials
- Meso- to micro-porous materials

Property	KG2-PURE	KG2-950
SSA, m²/g	30.593	9.732
TPV, cm³/g	0.1211	0.0273
APD, nm	8.3577	8.0218

The geopolymeric support selected had the code name KG2

3rd Global Summit on Advanced Materials For Energy Applications (GAMSE25)

(2a) Incorporation of transition metals (Cu, Ni, Co) as active catalytic phase The case of copper (Cu)

Synthesis conditions

- [Me] content in the precursor
- Process kinetics

Evaluation of materials

- > XRD analysis / SEM & TEM analysis
- Catalytic performance testing (CO and HCs oxidations)

3rd Global Summit on Advanced Materials For Energy Applications (GAMSE25)

XRD analysis

Before calcination

 Copper is incorporated in geopolymer as a mixed hydroxide-nitrate salt

After calcination (600 °C, 4h)

Copper salt is transformed to an XRDamorphous phase (nano-sized Cu oxide)

900 Furnace temperature /*C

Aveiro, Portugal, 30 April-3rd Global Summit on Advanced Materials For Energy Applications (GAMSE25) 1,2 May 2025

Development of Geopolymeric catalysts

TG analysis of NaG4 geopolymer

MATERIAL SUMM SCIENTIFIC RESEARCH

Thermal decomposition at 230 °C:

 $4Cu_{2}(OH)_{3}NO_{3} = 8CuO + 6H_{2}O + 4NO_{2} + O_{2}$

Mass loss (25 – 230 °C) = 14.5 %

Mass loss (230 – 550 °C) = 9%

Before calcination

Copper salt is surface precipitated forming characteristic "flakes"

After calcination (600 °C, 4h)

CuO nano-size particles are formed

3rd Global Summit on Advanced Materials For Energy Applications (GAMSE25)

Catalytic performance testing (6 %wt. of Cu)

- \checkmark Oxidation of CO and C₃H₆ in an adequate efficiency
- \checkmark No any activity for C₃H₈ and CH₄ oxidation

Experimental conditions:

200mg of catalyst, feed = 200Nml/min, λ =1 (stoichiometry), GHSV 60000, pre-treatment: 2 h at 500 °C under stoichiometric feed, measurements taken at steady state conditions every 50 °C.

Tested oxidations:

The new catalysts were tested against the oxidation of CO, C_3H_{g} , C_3H_6 and CH_4 .

 An automotive catalyst based on *y-alumina and Pd/Rh was used as reference*.

(2b) Incorporation of PGMs (Pd) as the active phase / catalyst

- Geo-support NaG4 (< 45 μm)
- Aqueous solution of Pd(NO₃)₂ x 2H₂O

Synthesis conditions

- Pd content in the precursor
- Process kinetics

Evaluation of materials

- XRD analysis / SEM & TEM analysis
- Catalytic performance testing (CO and HCs oxidations and NOx reductions)

3rd Global Summit on Advanced Materials For Energy Applications (GAMSE25)

Development of Geopolymeric catalysts

XRD analysis

Before calcination

- Pd is incorporated in geopolymer as PdO
- Surface precipitation mechanism resulting in the formation of PdO nano-crystals

The diffraction peaks of PdO became sharper and higher, indicating increase of the size of PdO nano-crystals

After calcination (600 °C, 4h)

SEM analysis / Elemental mapping

Before calcination

Good dispersion of Pd particles on the whole area of the geopolymeric support

After calcination (600 °C, 4h)

Agglomeration of Pd particles

3rd Global Summit on Advanced Materials For Energy Applications (GAMSE25)

TEM analysis

Before calcination

- Nano-size particles of Pd
- Very good dispersion of Pd in the geopolymeric mass

Pd particles agglomerated

MATERIAL SUMMI SCIENTIFIC RESEARCH

3rd Global Summit on Advanced Materials For Energy Applications (GAMSE25)

Similar or better performance for CO and C_3H_6 oxidations

- NaG4/0.5%Pd

200

300

Temperature, oC

400

500

- \checkmark Good performance for C₃H₈ oxidation
- No any activity for CH₄ oxidation \checkmark

- **Experimental conditions:** 200mg of catalyst, feed = 200Nml/min, λ=1 (stoichiometry), GHSV 60000, pre-treatment: 2 h at 500 °C under stoichiometric feed, measurements taken at steady state conditions every 50 °C.
- **Tested oxidations:** The new catalysts were tested against the oxidation of CO, C_3H_8 , C_3H_6 and CH_{A} .
- An automotive catalyst based on y-alumina and Pd/Rh was used as reference.

(3) Doping with CeO₂ (before the incorporation of Pd)

Synthesis conditions

- > Ce content in the precursor
- Process kinetics

Evaluation of materials properties

- > XRD analysis / SEM analysis / BET analysis
- Catalytic performance testing

3rd Global Summit on Advanced Materials For Energy Applications (GAMSE25)

Synthesis conditions / process kinetics

Development of Geopolymeric catalysts

 CeO₂ doped forms a plateau at ~8%wt. for the Na-Geo supports and optimizes at ~6% wt. for the K-Geo supports

 The kinetics of Ceria doping process is very fast (85% is completed in 1h)

3rd Global Summit on Advanced Materials For Energy Applications (GAMSE25)

XRD analysis

 Precipitation as Cerium Oxide Carbonate Hydrate Ce₂O·(CO₃)₂
·H₂O that transforms to CeO₂ after heating at 600 °C/4h.

 Ce is homogeneously dispersed on the geopolymer forming surface precipitants of nano- to micro-size

BET analysis

MATERIAL	SSA m2/g	Total PV cc/g	Average PD nm
KG2-pure	30.593	1.21E-01	9.2
KG2-950	9.732	2.73E-02	8.8
KG2-Ce5-600	16.536	3.76E-02	9.1
KG2-Ce5-950	12.711	2.47E-02	7.8

- Ce-doped geopolymer had lower SSA and TPV.
- The difference between SSA and TPV in the thermally treated geopolymers are importantly reduced.

3rd Global Summit on Advanced Materials For Energy Applications (GAMSE25)

Catalytic activity testing of CeO₂ doped Geo-Pd catalysts (5% CeO₂ and 0.5% Pd)

- Na-Geo/Ce5/Pd0.5
- K-Geo/Ce5/Pd0.5

MATERIAL SUMM

- Excellent performance for all oxidations
- K-Geo catalyst has a better activity than the Na-Geo catalyst

400

Conclusions

- Geopolymer catalysts suitable to be used in Intermediate-Temperature Solid Oxide Fuel Cells were developed.
- The geopolymeric catalytic supports based on sodium are macroporous with limited structural stability up to 950 °C
- The geopolymeric catalytic supports based on potassium are mesoporous with very good structural stability up to 950 °C
- Active metals were successfully incorporated in the geopolymer through a hydrochemical process and following a surface precipitation mechanism (PdO nano-particles)
- Ceria-doping improved the catalytic activity of Geo-catalysts
- > Geopolymers are promising materials for applications in the field of energy production

Thank you for your attention!

Ioanna Giannopoulou, Metallurgical Eng., PhD National Technical University of Athens, School of Mining and Metallurgical Engineering, Laboratory of Metallurgy E-mail: ioangian@central.ntua.gr

Co-author:

Dr Alexandros Michaelides

RTD Talos Ltd.

E-mail: <u>am@talos-rtd.com</u>

3rd Global Summit on Advanced Materials For Energy Applications (GAMSE25)